Part Number Hot Search : 
MMBT4401 RM45P9 MICROS STUN013 TK11950 350N06L AN2966 346AK
Product Description
Full Text Search
 

To Download TB1274BFG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TB1274BFG
TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC
TB1274BFG
LUMINANCE, CHROMA AND SYNCHRONIZING SIGNALS PROCESSOR IC FOR PAL / NTSC / SECAM COLOR TV
TB1274BFG integrates luminance, chroma and synchronizing signals processing circuits for PAL / NTSC / SECAM color TV system. TB1274BFG incorporates high performance picture quality compensation circuits in luminance section, an automatic PAL / NTSC / SECAM discrimination and decode circuits in chroma section, and an automatic 50 / 60 Hz discrimination circuit in synchronizing section. Besides a crystal oscillator generates 4.43MHz, 3.58MHz and QFP48-P-1014-0.80 M/N-PAL clock signals internally for color demodulation. A horizontal PLL circuit is also built in this IC. Weight : 0.83 g (Typ.) PAL / SECAM demodulation circuits which are adjustment-free circuits incorporates a 1H DL circuit inside for operating the base band signal processing system. Also, TB1274BFG makes it possible to set and to control various functions through the built-in I2C BUS line.
FEATURES LUMINANCE SECTION * Built-in chroma trap filter * Y delay line * Sharpness control * Sub-Contrast control (-/+ 2dB) * Black set-up CHROMA SECTION * Built-in 1H delay circuit (PAL / SECAM base band demodulation system) * One crystal color demodulation circuit (4.43MHz, 3.58MHz, M/N-PAL) * Automatic system discrimination system and forced system mode * 1H delay line also serves as comb filter in NTSC demodulation * Built-in band-pass and take-off filter, SECAM bell filter * Sub-Color control (-/+2dB)
SYNCHRONIZING SECTION * Built-in horizontal VCO resonator * Adjustment-free horizontal and vertical oscillation by count-down circuit * Automatic vertical frequency discrimination circuit * Noise detection circuit OTHERS * Y/C out level control * 4-channels inputs switching * 2-input circuit for RGB * 2-input circuit for Y/Cb/Cr * Y/Cb/Cr outputs * Cb/Cr offset adjustment * Built-in pre filters for A/D converter
1
2005-08-18
X'tal
fil
YS2/YM (RGB2-in)
R2-in
G2-in
B2-in
Y/C-VCC
Y2-in
Cb2-in
Cr2-in
Y/C-GND
R1-in
G1-in
BLOCK DIAGRAM
38
37
36
35
34
33
32
31
30
29
28
27
26
25
CLAMP VCXO MATRIX APC CW PHASE OFFSET2 MATRIX fsc TINT
CLAMP
CLAMP
C3-in
39
B1-in
24
YS1 (YCbCr2-in) 23 Cr-out
APC-fil
SUBCOLOR DL Cb/Cr SW SW SW 1H DL CLP Y LPF OFFSET1 HALF TONE SHARPNESS BASEBAND SW
40
CVBS3/Y3-in
41
22 Cb-out
LPF AMP
SET-UP
ADDRESS
42
21
Y-out
C2-in
SW (C-MUTE) SUBCONTRAST DEEMPHASIS
43
20
CLP-fil
BPF/ TOF BELL EQ
SECAM ID
SW
Fsc-out
ACC CHROMA ID CHROMA TRAP COLOR SYSTEM S DOUBLE TRAP
46
CLAMP
C1-in
48
H C/D
H VCO
AFC I2C BUS CONTROL
MASK
VS
HS
SCP
SCL
Sync-in
CVBS-out
Yvi-out
Comb Y-in
Comb C-in / Forced-S
CVBS1/Y1-in
Digital-VDD
Digital-GND
Sync-VCC
SDA
2
P/N DEMO P/N ID Y DL SECAM DEMO BLACK ADJ V C/D C CVBS/YC SELECT Y
CVBS2/Y2-in
44
19
Y1-in
Comb SYS
45
18
Cb1-in
17
V SEPA V INTEG + SYNC SEPA
Cr1-in
AFC-fil
47
16
Sync-GND
15
YS3 (RGB1-in)
TB1274BFG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2005-08-18
TB1274BFG
TERMINAL DESCRIPTIONS (YC-VCC/SYNC-VCC/D-VDD=5V and Ta=25, unless otherwise specified) PIN INPUT / OUTPUT PIN NAME FUNCTION INTERFACE CIRCUIT No. SIGNALS
32
2.5V
1
CVBS1/Y1-IN
Input CVBS1/Y1 signal through a clamping capacitor.
1
250 50A 50A
CVBS : 1Vp-p Y : 1Vp-p(with sync) DC : 1.8V
28
12
1k
2
SYNC-IN
Input signal to synchronize.
2
1Vp-p (with sync) DC : 1.7V
1.5V
16
32
100
8k 700A
3
CVBS-OUT
CVBS or Y+C signal output pin.
3
50
2Vp-p(with sync) DC : 0.6V
28
12
120A
4
VS
Output pin of vertical synchronizing signal. Minimum pull-up resister is 6.8k.
4
Hi Low
50
4.7VHi5.2V 0VLow0.8V
16 32
5
COMB Y-IN
Input luminance signal from Comb filter through a clamping capacitor.
2.5V
5
250
1Vp-p(with sync) DC : 1.8V
28
6
D-VDD
Power supply pin for DDS/BUS/V-CD/H-CD sections. Input chroma signal from Comb filter through a clamping capacitor. When this pin is connected to Vcc, color killer is OFF and SECAM ID is ON forcibly. (Forced SECAM mode) Refer to FUNCTION DESCRIPTION.
32
DC 5V
7
COMB C-IN / FORCED-S
40k
7
250
C
Forced-S
0.3Vp-p(Burst) DC : 2.4V 4.0VForced-S5.0V (Th : 3.5V)
28
50k 2.4V 40pF
20k 3.5V
3
2005-08-18
TB1274BFG
PIN No. 8 PIN NAME D-GND FUNCTION GND pin for DDS/BUS/V-CD/H-CD sections. INTERFACE CIRCUIT
12
125
INPUT / OUTPUT SIGNALS
9
HS
20k
Output pin of horizontal synchronizing signal. Minimum pull-down resister is 2.7k.
Hi Low
9
50
16
3.8VHi4.6V 0Low1.0V
CP H-BLK Low
12
10
SCP
Sand Castle Pulse output pin. The clamping pulse and the horizontal blanking pulse are outputted.
10
100
50
16
3.6VCP4.4V 1.6VH-BLK2.4V 0.0VLow0.8V with pull-down resister (7.5k)
12
100
11
Yvi-OUT
8k
Output pin to synchronize inputs. Y signal from video-SW is outputted.
11
50
1Vp-p(with sync) DC : 2.1V
16
12
SYNC-VCC
Power supply pin for SYNC/HVCO sections.
liner
6
100k
DC 5V
15k
13
3k
SCL
SCL
2.7V
13
SCL
SCL pin for I2CBUS.
8
6
100k
14
50
3k
SDA ACK
SDA
2.7V
14
SDA
SDA pin for I2CBUS.
15k
8
30k
15
YS3 (RGB1-in)
16
SYNC-GND
Pin to switch main signals and RGB1 signals. If the voltage of this pin is HI and the RGB1-ENB data is "enable" via I2C BUS, RGB1-IN is selected. And its status is responded to the Read Bus data. GND pin for liner SYNC/HVCO sections.
32
6k
15
1.0VRGB15.0V (Th : 0.7V)
28
4
2005-08-18
TB1274BFG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT
32
INPUT / OUTPUT SIGNALS
17
Cr1-IN
240 17,18 240 240
18
Cb1-IN
2.5V
28
Input Y1/Cb1/Cr1 signal through a clamping capacitor. (Selected by I2C BUS.) When Y/Cb/Cr1-IN is active, Y1 signal is synchronized.
32
1k
Y : 1Vp-p(with sync) DC : 1.7V Cb/Cr : 0.7Vp-p(100 color bar) DC : 2.5V
1k
19
Y1-IN
19
5k
28
32
20
CLP-FIL
Connect a filter for clamping Y signal.
20
10k 50
28
100
21 22 23
Y-OUT Cb-OUT Cr-OUT Y/Cb/Cr output pins. The output's amplitudes is variable from 0.5 to 1.6Vp-p by I2C BUS.
21,22,23 50
32
DC ; Y : 1.3V, Cb/Cr : 1.8V AC ; Y : 0.7Vp-p(0dB,non-sync) Cb/Cr : 0.7Vp-p(0dB)
700A
28
32
10k
24
YS1 (YCbCr2-in)
Pin to switch main signals and YCbCr2 signals.
30k
24
6.1k
1.0VYCbCr25.0V (Th : 0.7V)
28
5
2005-08-18
TB1274BFG
PIN No. 25 PIN NAME B1-IN Input RGB1 signal through a clamping capacitor.(Selected by YS3 and I2C BUS.) 0.7Vp-p DC : 2.5V FUNCTION INTERFACE CIRCUIT
32
INPUT / OUTPUT SIGNALS
250 25,26,27 250 2.5V 250
26
G1-IN
27
R1-IN
28
28
Y/C-GND
GND pin Y/C/Text/Video-SW/1HDL sections.
for
32
29
Cr2-IN
270 29,30 270 240
DAC OFFSET
30
Cb2-IN Input Y2/Cb2/Cr2 signal through a clamping capacitor. (Selected by YS1.)
2.5V
28
Y : 1Vp-p(with sync) DC : 1.7V Cb/Cr : 0.7Vp-p(100 color bar) DC : 2.5V
32
31
Y2-IN
240
31
240 240 1.7V
28
32 33
Y/C-VCC B2-IN
Power supply pin for Y/C/Text/ Video-SW/1HDL sections.
32
DC 5V
34
G2-IN
Input RGB2 signal through a clamping capacitor. (Selected by YS2.)
250 33,34,35 250 2.5V 250
0.7Vp-p DC : 2.5V
35
R2-IN
28
32
36
YS2/YM (RGB2-in)
30k
Pin to switch main signals and RGB2 inputs. Half-tone ON/OFF SW is also included. Half tone gain is selected by I2C BUS.
36
6k
1.0VYM1.5V 2.5VRGB25.0V (Th1 : 0.7V, Th2 : 2.0V)
28
6
4k
2005-08-18
TB1274BFG
PIN No. 37 PIN NAME FIL FUNCTION Connect this terminal to Y/C VCC. INTERFACE CIRCUIT INPUT / OUTPUT SIGNALS
-
32
-
38
X'TAL
Pin to connect a 16.2MHz crystal. Recommended crystal : NR-18 NT162020A, made by NIHON DENPA KOGYO CO, LTD.
500
1k 1k
16.2MHz wave
38
500
28
32
39
C3-IN
Input C3 signal clamping capacitor.
through
a
39
40k 50A 1.6V 50A 250
0.3Vp-p(Burst) DC : 1.6V
28
32
40
APC-FIL
Connect APC filer.
40
200
110k
3.2V
28
32
2.5V
41
CVBS3/Y3-IN
Input CVBS3/Y3 signal through a clamping capacitor.
41
250
50A 50A
CVBS : 1Vp-p Y : 1Vp-p(with sync) DC : 1.8V
28
100k
Slave address setting pin. Select slave address. When this pin is open, 8A/8BH is selected. 42 ADDRESS W R 88H 89H 8AH 8BH 8EH 8FH
42
100k
6
3k 100k
88/89H1.3V 3.9V8E/8FH (Th1 : 1.5V, Th2 : 3.2V)
8 32
43
C2-IN
Input C2 signal clamping capacitor.
through
a
43
40k 50A 1.6V 50A
250
6k
0.3Vp-p(Burst) DC : 1.6V
28
7
2005-08-18
TB1274BFG
PIN No. PIN NAME FUNCTION INTERFACE CIRCUIT
32
2.5V
INPUT / OUTPUT SIGNALS
44
CVBS2/Y2-IN
Input CVBS2/Y2 signal through a clamping capacitor.
44
250
50A 50A
CVBS : 1Vp-p Y : 1Vp-p(with sync) DC : 1.8V
28
50k
The status of color system is responded to pin 45 and pin 46. It is the same as Read BUS status. 45 COMB SYS
Color system M-PAL 4.43PAL, SECAM, B/W 3.58/4.43NTSC N-PAL Pin 45 Low High Low High Pin 46 Low Low High High
32
5V High Low
28
32
45
0V
Refer to DESCRIPTION.
FUNCTION
AC : 0.84Vp-p DC : as blow fig.
(3.1V) High Low (2.1V)
46
Fsc-OUT
220A
Sub-carrier output pin. Refer to FUNCTION DESCRIPTION.
46
100
28
12
47
AFC-FIL
Connect AFC filter.
47
300
300
16
32
48
C1-IN
Input C1 signal clamping capacitor.
through
a
48
40k 50A 1.6V 50A
250
0.3Vp-p(Burst) DC : 1.6V
28
8
2005-08-18
TB1274BFG
WRITE MODE SLAVE ADDRESS : 88H / 8AH / 8EH SUB MSB LSB ADDRESS D7 D6 D5 D4 D3 D2 D1 D0 80 P/N ID P/N GW TINT 81 SUB-CONTRAST SUB-COLOR 82 SHARPNESS GAIN SHARPNESS EQ SHARPNESS f0 83 0 0 Y-OUT LEVEL 84 0 0 C-OUT LEVEL 85 LPF S-D TRAP C-TRAP SW FILTER SW BPF Q BPF f0 86 N-COMB Y-DL COLOR SYSTEM 87 Cb/Cr-MUTE HALF TONE RGB SELECT VIDEO SELECT 88 Cb OFFSET1 Cr OFFSET1 89 Cb OFFSET2 Cr OFFSET2 8A MVM AFC GAIN V C/D MODE V-FREQ 8B S B-Y ADJ S R-Y ADJ 8C S-INHBT S ID S GP S V-ID BELL f0 BELL/HPF 8D AUTO-SW 0 0 0 HS-PH 0 SETUP-SW RGB1 ENB 8E 0 VP-PH 1 0 0 0 0 0 8F TEST MODE READ MODE SLAVE ADDRESS : 89H / 8BH / 8FH SUB MSB ADDRESS D7 D6 D5 00 POR COLOR SYSTEM 01 V-FREQ V-STD C ID Note) * ; don't care
PRESET 0010 1000 1000 0010 0010 0000 0010 0000 1000 1000 0000 1000 0000 1000 0010 0000 0000 1000 0000 0000 0000 0000 1000 0000 1000 1000 0000 1000 0000 0000 0000 0000
D4 X'TAL V-SIG
D3 V15
D2 N-DET *
D1 *
LSB D0 H-LOCK 1
9
2005-08-18
TB1274BFG
BUS CONTROL FUNCTION WRITE MODE SLAVE ADDRESS : 88H / 8AH / 8EH
ITEM / Number of bits
FUNCTION TINT adjustment for NTSC PAL/NTSC gate width PAL/NTSC sensitivity SW Sub-color control Sub-contrast control Sharpness center frequency changing
VARIABLE RANGE 00H : -33deg3F H : +33deg (1LSB=1.1deg) 0 : 2.0s, 1 : 3.2s 0 : Normal, 1 : Low 0 H : -2dB F H : 2dB 0 H : -2dB F H : 2dB 00 : 2.5MHz, 01 : 3.2MHz 10 : 4.0MHz, 11 : OFF 00 : 1 : 1.2, 01 : 1 : 1 10 : 1.2 : 1, 11 : 1.4 : 1 0 H : -6dB F H : 6dB 00 H : 0.5 3F H : 1.6Vp-p 00 H : 0.5 3F H : 1.6Vp-p 00 : -400kHz, 01 : +0kHz, 10 : +400kHz, 11 : OFF(by-pass) 00 : 1.0, 01 : 1.5 10 : 2.0, 11 : 2.5 0 : BPF, 1 : TOF 0 : ON, 1 : OFF
PRESET 0deg 2.0s Normal 0dB 0dB 2.5MHz 1 : 1.2 0dB 1.05Vp-p 1.05Vp-p -400kHz 1.0 BPF ON
TINT / P/N GW / P/N ID / SUB-COLOR / SUB-CONTRAST / SHARPNESS f0 /
SHARPNESS EQ / Sharpness equalizer characteristic (Evaluation with 2T-pulse) SHARPNESS GAIN / Sharpness gain control Y output level control (pin 21) Y-OUT LEVEL / Cb/Cr output level control (pin 22/23) C-OUT LEVEL / BPF/TOF f0 adjustment BPF f0 / BPF Q / FILTER SW / C-TRAP SW / BPF/TOF Q adjustment
BPF/TOF switch Chroma trap switch This function is controlled automatically by setting of "VIDEO SELECT" and "Y/C-AUTO". Refer to FUNCTION DESCRIPTION. SECAM double trap switch S-D TRAP / This function is controlled automatically by setting of "VIDEO SELECT" and "Y/C-AUTO". Refer to FUNCTION DESCRIPTION. Y/Cb/Cr LPF switch LPF / COLOR SYSTEM / Color system switching Europe automatic mode ; 4.43PAL, 4.43NTSC, 3.58NTSC, SECAM South America automatic mode ; 3.58NTSC, M-PAL, N-PAL Refer to FUNCTION DESCRIPTION. Y-DL time adjustment (1LSB=40ns) Y-DL / Refer to FUNCTION DESCRIPTION.
0 : OFF,
1 : ON
OFF
0 : ON, 1 : OFF(by-pass) 000 : Europe automatic 001 : South America automatic 010 : 3.58NTSC 011 : 4.43NTSC 100 : 4.43PAL 101 : SECAM 110 : M-PAL, 111 : N-PAL 0000 : 120 1010 : 520ns 1011 1111 : don't use
ON Europe automatic
320ns
10
2005-08-18
TB1274BFG
ITEM / Number of bits
FUNCTION
VARIABLE RANGE
PRESET OFF 0000 Main -10dB OFF 0mV 0mV
1H addition switch, when NTCS. N-COMB / VIDEO SELECT / Selection of input video signals RGB SELECT / HALF TONE / Cb/Cr-MUTE / Cb/Cr OFFSET1 / / Cb/Cr OFFSET2 / / V-FREQ /
0 : OFF, 1 : ADD Refer to FUNCTION DESCRIPTION. Selection of input sources. 00 : Main, 01 : YCbCr1 Refer to FUNCTION DESCRIPTION. 10 : RGB1, 11 : don't use Half tone gain switch 0 : -10dB, 1 : -6dB Cb/Cr output mute switch 0 : OFF, 1 : ON Cb/Cr offset adjustment (main route) 0 H : -12 F H : +10.5mV Cb/Cr offset adjustment (YCbCr2 input) V count down frequency switch. Automatic mode 1 ; 50/60Hz automatic distinction. At no-signal, the last statement is kept. Right after power-on, 50Hz mode is run. Automatic mode 2 ; 50/60Hz automatic distinction. And 50Hz mode is run at no-signal. Refer to FUNCTION DESCRIPTION. V count down judge switch. Refer to FUNCTION DESCRIPTION. 0 H : -12 F H : +10.5mV
V C/D MODE /
Automatic 000 : Automatic mode 1, mode 1 001 : 50Hz, 010 : 60Hz, 011 : Automatic mode 2, 100 : Forced 312.5H (AFC free-run), 101 : Forced 262.5H (AFC free-run), 110 : Forced 313H (AFC free-run), 111 : Forced 263H (AFC free-run) 00 :Normal 1, 01 : Teletext, Normal 1 10 : Fast, 11 : Normal 2 note)
Normal 1 : One time detection Normal 2 : Continuously detection
AFC SENS / MVM / S R-Y ADJ / S B-Y ADJ / BELL/HPF /
AFC sensitivity switch
BELL f0 / S V-ID SW / S GP / S ID / S-INHBT / RGB1 ENB /
00 : +6dB, 01 : 0dB, 10 : -6dB, 11 : -17dB Macrovision Mask + AFC Mask 0 : Narrow, 1 : Always masked SECAM R-Y black adjustment 0 H : -10 F H : 8.8mV SECAM B-Y black adjustment 0 H : -10 F H : 8.8mV SECAM bell/HPF switching. Or the 00 : Bell, 01 : Boost 1, high frequency side on SECAM bell 10 : Boost 2, 11 : HPF filter is boosted. Refer to FUNCTION DESCRIPTION. 0 : Normal, 1 : +15kHz BELL f0 adjustment SECAM V-ID switch 0 : OFF, 1 : ON SECAM gate position adjustment (Its 00 : Normal, 01 : 0.4s delay, width is same) 10 : Normal, 11 : 0.4s forward SECAM sensitivity switch 0 : Normal, 1 : Low SECAM inhibition switch 0 : Normal, 1 : Inhibited Enable YS3 to switch to RGB1-IN. 0 : Disable, 1 : Enable Refer to FUNCTION DESCRIPTION.
+6dB (data : 00) Narrow 0mV 0mV Bell
Normal OFF Normal Normal Normal Disable
11
2005-08-18
TB1274BFG
ITEM / Number of bits
FUNCTION Auto Video select mode SW Select automatically for CVBS, Y/C and Comb mode by setting of "AUTO-SW" and "VIDEO SELECT". And also select automatically for C-Trap and S-D Trap. Refer to FUNCTION DESCRIPTION. Switching for VP output phase Y black level set-up HS Output phase switch Factory test mode. Set all zero.
VARIABLE RANGE 0 : Auto select Data of SA 07H D3 0 : Auto Y/C select mode 1 : Auto Comb select mode 1 : Manual select 0 : +0.75H, 1 : +0.6875H 0 : Normal, 1 : Set-up 0 : H-Sync(4.7s), 1 : GP(3.2s)
PRESET Manual Select
AUTO SW /
VP-PH / SETUP-SW / HS-PH / TEST MODE /
+0.75H Normal H-Sync 00H
READ MODE SLAVE ADDRESS : 89H / 8BH / 8FH ITEM / Number of FUNCTION bits H. Lock detection H-LOCK / Noise judgment N-DET /
VARIABLE RANGE 0 : Un-lock, 1 : Lock 00 : SN > 40dB, 01 : 10dB > SN, 10 : 40dB > SN > 20dB, 11 : 20dB > SN > 10dB 00 : 4.433619MHz(PAL) 01 : 3.579545MHz(NTSC) 10 : 3.575611MHz(M-PAL) 11 : 3.582056MHz(N-PAL) 00 : B/W, 01 : PAL 10 : NTSC, 11 : SECAM 0 : Normal, 1 : Resistor preset 0 : Low, 1 : High 0 : Existing, 1 : Not existing 0 : Not detected (CVBS), 1 : Detected (Y/C) 0 : Non-STD, 1 : STD
X'TAL /
Crystal mode judgment
COLOR SYSTEM / POR / V15 / V-SIG / C ID /
Color system judgment Power On Reset Status of pin 15 voltage Refer to FUNCTION DESCRIPTION. Internal V. pulse detection for V. lock Input signal condition (Detection of burst signal on C-IN pins) Refer to FUNCTION DESCRIPTION. Decision on the standard of the vertical frequency. When no-signal, 1 : STD is responded. Vertical frequency judgment. Right after power-on, 0 : 50Hz is responded. At no-signal, the last statement is kept. The bit for product ident
V-STD / V-FREQ /
0 : 50Hz,
1 : 60Hz
SA 01 D0 /
0 : TB1239**,
1 : TB1274**
12
2005-08-18
TB1274BFG
I2C BUS START-UP PROCEDURE Just after power-on, TB1274BFG starts tuning automatically. Initially, I2C-BUS decoder works, and then H-VCO alignment circuit works. The following figure describes the start-up status. While Vcc is lower than 3.4V, Power-On-Reset flag indicates 1. To make TB1274BFG functioning properly, verify that POR bit is 0 by reading the I2C BUS status data before writing data. POR is released by reading status data. Please refer the following figure and optimize the software on the set. 1. Power on the device. 2. Read the I2C BUS status bytes until POR bit indicates 0. 3. Write all bytes.
V 5 typ.Vcc
Power Supply Voltage
3.8 3.4 H-VCO Internal alignance start BUS Power ON Reset (POR)
Time going
t
Fig.
Start-up status in the IC
13
2005-08-18
TB1274BFG
DATA TRANSFER FORMAT VIA I2C BUS Slave address : select slave address for setting voltage of pin 42. Pin42-GND(<1.3V) : 88H Pin42-Open : 8AH A6 1 A5 0 A4 0 A3 0 A2 1 A1 0 A0 0 W/R 0/1 A6 1 A5 0 A4 0 A3 0 A2 1 A1 0 A0 1 W/R 0/1
Pin42-VDD(>3.9V) : 8EH A6 1 A5 0 A4 0 A3 0 A2 1 A1 1 A0 1 W/R 0/1
Start and stop condition
SDA
SCL
S Start condition
P Stop condition
Bit transfer
SDA
SCL
SDA stable
Change of SDA allowed
Acknowledge
SDA by transmitter SDA by receiver SCL from master
The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse.
The receiver has to pull down the SDA line (LOW) during the acknowledge clock pulse.
S
1
8
9 Clock pulse for acknowledgment
Data transmit format 1
S Slave address 7bit MSB MSB 0A1 Sub address 7bit MSB A Transmit data 8bit AP
Data transmit format 2
S Slave address 0A1 Sub address 1 A Transmit data 1 A A AP
Sub address
Transmit data n
14
2005-08-18
TB1274BFG
Data receive format
S Slave address 7bit MSB MSB 1A Received data 00 8bit A Received data 01 AP
At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The Stop condition is generated by the master.
Option Data transmit format Automatic increment mode 1
S Slave address 7bit MSB S : Start condition 0A0 Sub address A MSB P : Stop condition Transmit data 8bit AP 7bit MSB A : Acknowledge
Automatic increment mode 2
S Slave address 7bit 0A0 Sub address 7bit A Transmit data 1 8bit Transmit data n 8bit AP
In this transmission method, data is set on automatically incremented sub-address from the specified sub-address. I2C BUS Conditions
Characteristics Low level input voltage High level input voltage Low level output voltage at 3 mA sink current Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD Capacitance for each I/O pin SCL clock frequency Hold time START condition Low period of SCL clock High period of SCL clock Set-up time for a repeated START condition Data hold time Data set-up time Set-up time for STOP condition Bus free time between a STOP and START condition Symbol VIL VIH VOL1 Ii Ci fSCL tHD;STA tLOW tHIGH tSU;STA tHD;DAT tSU;DAT tSU;STO tBUF Min 0 3.8 0 -10 0 4.0 4.7 4.0 4.7 50 250 4.0 4.7 Typ. Max 1.3 Vcc 0.4 10 10 100 Unit V V V A pF kHz s s s s ns ns s s
15
2005-08-18
TB1274BFG
FUNCTION DESCRIPTION VIDEO SELECT, AUTO-SW 1) "AUTO-SW" = (1) Manual select When "AUTO-SW" is (1) Manual select, input signal is selected by the BUS as Fig. 1 and Table 1. Mainly, CVBS-OUT(pin 3) is used for the comb filter input, and Yvi-OUT(pin 11) is used for synchronization(pin 2). Besides, on chroma line from video SW to main route, the peak detection is done during the burst period. The result is responded to the Read BUS data, C ID.
VIDEO-SW SECTION CVBS1/Y1-IN CVBS2/Y2-IN CVBS3/Y3-IN
A B C
SW1
SW3
A B
CVBS-OUT (to Comb filter)
6dB
Y
MIX C SW5
A B A B A B
Yvi-OUT (to SYNC-IN) Main Y (to Y section) Main C (to C section) Chroma ID
C1-IN C2-IN C3-IN (from Comb filter) COMB Y-IN (from Comb filter) COMB C-IN
A B C
SW2
SW4 0dB 0dB
SW6
Fig. 1 Table 1 BUS DATA 1 0000 A 0001 B 0010 C 0100 A 0101 B 0110 C 1000 A 1001 B 1010 C others
Signal route at Video SW section
Selected input and pin 3/11 output from Video SW section SW mode To Y/C section Output from V-SW 2 3 4 5 6 Main Y Main C CVBS-out Yvi-out AAAA CVBS1 CVBS1 CVBS1 CVBS1 AAAA CVBS2 CVBS2 CVBS2 CVBS2 AAAA CVBS3 CVBS3 CVBS3 CVBS3 ABBAA Y1 C1 Y1+C1 Y1 BBBAA Y2 C2 Y2+C2 Y2 CBBAA Y3 C3 Y3+C3 Y3 A B B COMB Y COMB C CVBS1 COMB Y A B B COMB Y COMB C CVBS2 COMB Y A B B COMB Y COMB C CVBS3 COMB Y Don't use.
16
2005-08-18
TB1274BFG
2) "AUTO-SW" = (0) Auto select Depending on this function and VIDEO SELECT, can select Auto Y/C select mode or Auto Comb select mode (Table 2). The input system chose automatically by the sate of color system detection and C-ID (Chroma ident detection). And C-TRAP and S-D TRAP selected also automatically. Table 2 The changing Selective Mode SA07H D3 Selective Mode Content 0 Auto Y/C select Automatic input select CVBS input or Y/C input 1 Auto Comb select Automatic input select Y/C-input and comb Y/C-input Table 3 The changing input system SA07H D1 SA07H D0 Input system 0 0 CVBS1 system 0 1 CVBS2 system 1 0 CVBS3 system 1 1 Don't use. Table 4 The changing input system and The changing TRAP The state of detection The changing input system Selective Mode C-ID Color System Y C CVBS-out 4.43PAL, M/N-PAL, 3.58/4.43NTSC Detected Y C Y+C SECAM Auto Y/C B/W Select 4.43PAL, M/N-PAL, 3.58/4.43NTSC Not CVBS CVBS CVBS detected SECAM B/W 4.43PAL, M/N-PAL, 3.58/4.43NTSC Detected Y C Y+C SECAM Auto Comb B/W Select 4.43PAL, M/N-PAL, Comb-Y Comb-C CVBS 3.58/4.43NTSC Not detected SECAM CVBS CVBS CVBS B/W Table 5 The neglecting control items Item Content SA07H D2 (: VIDEO SELECT) Neglecting SA05H D5 : C-TRAP date setting SA05H D6 : S-D TRAP
The changing TRAP C-TRAP S-D TRAP OFF OFF ON ON
OFF
OFF
ON OFF
ON OFF
Note) Depending on the input signal state, this function may malfunction.
17
2005-08-18
TB1274BFG
EXTERNAL INPUT SWs External inputs are selected by the BUS data and fast SWs. Final outputs from pin 21/22/23 are shown in Table 6. RGB1-IN interface complies with SCART connector. Therefore it is active, when RGB1-IN is enable by the BUS data and when YS3(pin 15) is also high. The status of YS3(pin 15) is responded to the Read BUS data, V15. Table 6 Outputs from pin 21/22/23 RGB YS3 YS1 YS2 RGB1 ENB Output SELECT (RGB1) (YCbCR2) (RGB2) L 0 Main H (from V-SW) 00 L 1 H RGB1 L 0 YCbCr1 H 01 L L 1 L H RGB1 L 0 H RGB1 10 L 1 H 11 H YCbCr2 L H RGB2 H RGB SELECT/RGB1 ENB : I2C BUS data, YS1/2/3 : Fast SW
COLOR SYSTEM Distinguishable color systems are selected Table 7 DC level of pin 45 and 46 on each color system by the write BUS data, COLOR SYSTEM. COLOR SYSTEM Pin 45 Pin46 The demodulated color system is responded to the read BUS data, COLOR SYSTEM and M-PAL Low Low X'TAL. (Refer to BUS CONTROL 4.43PAL, SECAM, High Low FUNCTION) The system data is also B/W responded to Comb SYS(pin 45) and 3.58/4.43NTSC Low High fsc-OUT(pin 46) as Table 7. If distinguishable N-PAL High High color system signal is not received, the system data is responded with B/W. Besides, if pin 7 is connected to VCC(more than 3.5V), Forced SECAM mode is active. In this mode, SECAM system is identified forcibly. It has priority over the BUS selection.
SECAM BELL FILTER SECAM bell filter characteristics can be changed by the BUS data, BELL/HPF. The group delay near chroma band is corrected by changing filter characteristic. As a result, S/N looks better. Besides, center frequency f0 of bell is changed by BELL f0. Indirectly, it is changed by BPF(TOF) f0.
Normal bell Boost 2
Boost 1 Normal bell
HPF
(a) Boost mode Fig.2
(b) HPF mode SECAM bell filter characteristics 18 2005-08-18
TB1274BFG
VERTICAL COUNT-DOWN In Automatic of V C/D MODE, the vertical synchronization is controlled by internal PLL. In Fast mode, it is synchronized with the inputted synchronizing signal and the pull-in time is short. Furthermore the time is shorter in Very fast mode by the expanded pull-in range. Pull-in range of vertical count-down is determined by the BUS data, V C/D MODE and V-FREQ as Table 8. Table 8 V C/D pull-in range Teletext Fast V C/D MODE Normal 1, 2 V FREQ 00, 11 01 10 000 Automatic 1 224-353H 32-353H 001 50Hz 274-353H 32-353H 010 60Hz 224-297H 32-297H 011 Automatic 2 224-353H 32-353H 100 312.5H Forced 312.5H mode & AFC free-run 101 262.5H Forced 262.5H mode & AFC free-run 110 313H Forced 313H mode & AFC free-run 111 263H Forced 263H mode & AFC free-run
00 ; Normal 1
Normal vertical input mode 1. It is good performance of vertical phase keeping for standard TV signal sync. And vertical output phase that is detected first time is kept always. And this mode can detect teletext or VCR skew sync (non-standard sync). This mode is less performance of vertical phase keeping for standard TV signal sync against "Normal". However, pull-in speed is faster few vertical periods than "Normal". Therefore this mode is recommended for tesetext sync. On the other hand, this mode can detect standard TV signal sync in the state of stability but it is less performance of vertical phase keeping in week signal as about -3dB against "Normal". This mode is same performance of vertical phase keeping for standard TV signal sync of "Teletext". But it is faster pull-in speed faster than "Teletext" because pull-in ranges wider than "Teletext". (refer to Table 8) Therefore, this mode is better to use when channel changing, but is not recommended to use in the state of stability or in week signal due to too wide pull-in range and incorrect actions of vertical keeping appearing. Basic detecting function is same as "Normal 1". And in "Normal 1" mode, the vertical output phase that is detected first time is kept, however, in this mode, the vertical output phase is detected always.
01 ; Teletext
10 ; Fast
11 ; Normal 2
Y-DL ADJUSTMENT Table 9 shows Y output delays against Y input on condition with BPF=f0, Q=2.0, Y-DL=Min and LPF=ON. Y-out signal can be delayed by the BUS data, Y-DL. The adjustment time of one step is 40ns. Table 9 Y delays according to the color system Color system Y delay (ns) PAL 450 NTSC 450 SECAM 650
19
2005-08-18
TB1274BFG
PULSES TIMMING HORIZONTAL PERIOD (Typical output phase of horizontal pulses)
Y input
Delay time (See Table 5)
Y output
HS output (HS-PH=0) HS output (HS-PH=1) SCP output (P/N GW=0)
0.4us
0.4us
2.9us 3.2us 3.7us 2.0us 60Hz : 10.0us 50Hz : 11.3us
2.7us 2.9us
SCP output (P/N GW=1)
3.2us
20
2005-08-18
TB1274BFG
VERTICAL PERIOD (Typical output phase of vertical pulse) 60Hz ODD
Input 0.75H VS output 8H SCP output 15H
60Hz EVEN
Input 0.75H VS output 8H SCP output 15H
50Hz ODD
Input 0.75H VS output 8H SCP output 20H
50Hz EVEN
Input 0.75H VS output 8H SCP output 20H
21
2005-08-18
TB1274BFG
MISCELLANEOUS CHARACTERISTICS SHARPNESS=OFF, LPF=OFF. Other BUS data is preset, unless otherwise specially.
Sub-contrast characteristic 2 1.5 1 Y-out level [dB] Gain [dB] 0.5 0 -0.5 -1 -1.5 -2 -2.5 0 3 6 BUS data 9 12 15 10 8 6 4 2 0 -2 -4 -6 -8 -10 1 MIN Sharpness characteristics
MAX
CNT
2.5MHz 3.2MHz 4.0MHz
2
3 4 Frequency [MHz]
5
6
INPUT : RAMP 0.7Vp-p
Sub-color characteristic 2 1.5 Cb-out offset [mV] 1 Cb-out level [dB] 0.5 0 -0.5 -1 -1.5 -2 -2.5 0 3 6 BUS data 9 12 15 15 10 5 0 -5 -10 -15 -20 0 3 6 BUS data 9 12 15 Cb/Cr offset1 characteristic
INPUT : 4.43PAL 75% color bar (CVBS1-IN)
TINT characteristic 40 30 Cb-out offset [mV] 20 Phase shift [deg] 10 0 -10 -20 -30 -40 0 10 20 30 BUS data 40 50 60 15 10 5 0 -5 -10 -15 -20 0 3 6 BUS data 9 12 15 Cb/Cr offset2 characteristic
INPUT : 3.58NTSC rainbow color bar (CVBS1-IN)
22
2005-08-18
TB1274BFG
ACC characteristics 5 0 Cb-out level [dB] -5
TOF f0 characteristics 5 0 Gain [MHz] -5 -10 -15 -20 -25
-50 -40 -30 -20 -10 Burst level [dB] 0 10
-10 -15 -20 -25 -30 NTSC:Killer ON NTSC:Killer OFF PAL:Killer ON PAL:Killer OFF
-400kHz 0kHz +400kHz OFF 1.5 3.5 5.5 Frequency [MHz] 7.5
INPUT : 75% color bar BUS : C-out level=12, Sub-color=0, BPF=f0, Q=1.5
BPF f0 characteristics 5 0 -5 Gain [dB] -10 -15 -20 -25 0.5 2.5 4.5 Frequency [MHz] 6.5 -400kHz 0kHz +400kHz OFF
BUS : Q=1.5
TOF Q characteristics 5 0 -5 Gain [dB] -10 -15 -20 -25 1.5 3.5 5.5 Frequency [MHz] 7.5 1.0 1.5 2.0 2.5
BUS : Q=1.5
BFP Q characteristics 5 0 -5 Gain [dB] -10 -15 -20 -25 0.5 2.5 4.5 Frequency [MHz] 6.5 1.0 1.5 2.0 2.5
BUS : BPF=f0
Bell filter characteristics
20 10 0 Gain [dB] -10 -20 -30 -40 1 2 3 4 5 6 7 Frequency [MHz] 8 9 10
NORMAL BOOST1 BOOST2 HPF
BUS : BFP=f0
23
2005-08-18
TB1274BFG
C-trap characteristics 10 0 -10 Gain [dB] -20 -30 -40 -50 S-D trap -60 2 3 4 Frequency [MHz] 5 6 NTSC SECAM PAL
Y-out level characteristic 1.4 1.8 1.6 Cb-out level [Vp-p] Y-out level [Vp-p] 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 10 20 30 BUS data 40 50 60 0 0 10 1.2 1 0.8 0.6 0.4 0.2
C-out level characteristic
20
30 BUS data
40
50
60
INPUT : RAMP 1.0Vp-p with sync(Y1-IN)
Y-LPF characteristic 5 0 Gain [dB]
INPUT : 4.43PAL 75% color bar (Cb2-IN)
Cb/Cr-LPF characteristic 5 0 -5 Gain [dB]
-5 -10 -15 -20 -25 0 5 10 Frequency [MHz] 15 OFF ON
-10 -15 -20 -25 -30 0 1 2 3 4 5 Frequency [MHz] 6 7
OFF ON
INPUT : Y1-IN
INPUT : Cb1-IN
24
2005-08-18
TB1274BFG
MAXIMUM RATINGS (Ta25) ITEM SYMBOL RATING UNIT V Vp-p mW mW/
Supply voltage VCC/DDmax 5.5 Signal voltage at each input pin einmax 5 Power consumption PD (Note1) 1644 Power consumption reduction ratio 13.16 1/ja Operating temperature Topr -2065 Storage temperature Tstg -55150 (Note1) Put on the circuit board. Refer to the figure below.
1644
Power consumption PD (mW)
1118
13.16mW/
0
0
25
65
150
Ambient temperature Ta ()
Fig. Power consumption reduction against ambient temperature. (Note2)CAUTION 1. Since this device is susceptible to surge, handle with care. Especially, pin 39 is most weak to surge. 2. Confirm that pins connection is correct. Don't connect plus pins and minus pins to be opposite polarity. Refer to Handling Guide to handle ICs properly. 3. This device is not proof enough against a strong E-M field by CRT which may cause function errors and / or poor characteristics. Keeping the distance from CRT to the device longer than 20cm, or if cannot, placing shield metal over the device, is recommended in an application. 4. APC characteristics is sensitive to external conditions, please care floating capacitor by patterning and stray capacitor to X'tal.
4.4350 Occillation frequency [MHz] 4.4345 4.4340 4.4335
Oscillation frequency [MHz]
C1=9pF C1=10pF C1=11pF
4.4350 4.4345 4.4340 4.4335
C2=0pF C2=0.5pF C2=1pF
16.2MHz X'tal
4.4320 4.4315 2.6 2.8 3 3.2 3.4 3.6 3.8 APC terminal voltage [V] 4
4.4320 4.4315 2.6 2.8 3 3.2 3.4 3.6 3.8 APC terminal voltage [V] 4
Fig. APC characteristics according to stray capacitor
25
2005-08-18
10pF
C1
C2
4.4325
4.4325
16.2MHz X'tal
4.4330
38
4.4330
38
TB1274BFG
SUPPLY VOLTAGE ITEM Supply voltage DESCRIPTION Pin 6, 12, 32 MIN 4.75 TYP 5.0 MAX 5.25 UNIT V
ELECTRICAL CHARACTERISTICS (YC-VCC/SYNC-VCC/D-VDD=5V and Ta=25, unless otherwise specified) CURRENT CONSUMPTION PIN PIN NAME SYMBOL MIN TYP MAX UNIT No. 6 D VDD IDD 4 7 15 mA 12 SYNC VCC ICC1 9 13.5 20 32 Y/C VCC ICC2 75 100 130 AC CHARACTERISTICS VIDEO SWITCH SECTION ITEM Maximum video input range CVBS-OUT amplitude gain Frequency bandwidth Crosstalk between each input Y-OUT maximum output range Cb-OUT maximum output range Cr-OUT maximum output range LUMINANCE SECTION ITEM 3.58MHz 4.43MHz SECAM S double SYMBOL Gtr3 Gtr4 GtrS GtrSD Ysn MAIN Offs1MAIN Offs1YCbC YCbCr1 r1 RGB1 Offs1RGB1 Offs2 BSETUP TEST CONDITION (NOTE Y1) Trap off (NOTE Y2) (NOTE Y3) MIN 25 25 25 25 -5 -5 -5 -5 180 TYP 36 36 36 36 60 200 MAX 5 5 5 5 220 UNIT SYMBOL Vdrvi Gcv Gfv1 CTvsw Vdryo Vdrcbo Vdrcro TEST CONDITION (NOTE V1) (NOTE V2) (NOTE V3) (NOTE V4) (NOTE V5) MIN 1.4 TYP 6.0 12 -55 2.2 2.2 2.2 MAX UNIT Vp-p dB MHz dB Vp-p
Chroma trap attenuation Y S/N ratio Cb/Cr offset level 1 Cb/Cr offset level 2 Black set-up
dB
mV
mV
26
2005-08-18
TB1274BFG
CHROMA SECTION ITEM SYMBOL TEST CONDITION 3N,CNT (NOTE C1) MIN TYP MAX UNIT
T3NCT TINT center -10 0 10 deg APC pull-in range (4.43MHz PAL) APCp -400 400 Hz 3N,NORMAL KilNNoff -42.5 ONOFF 3N,LOW, KilNLoff -38 ONOFF (NOTE C2) Killer operation input level dB 4P,NORMAL, KilPNoff -45 ONOFF 4P,LOW, KilPLoff -40.5 ONOFF Demodulated Cb and Cr output level ldNTSC Cr(x)/Cr(PAL) -1.5 0 1.5 dB Difference (PAL 75% color ber) Cb(x)/Cb(PAL) ldSECAM -1.5 0 1.5 dB V3Nbr PAL : Cr/Cb -1 1 Demodulation relative amplitude (Cb/Cr) dB V4Nbr NTSC : Cr/Cb -1 1 V4Pbr SECAM : Cr/Cb -1 1 ldYCbCr1 -2 2 ldRGB1 -2 2 Cr(x)/Cr(PAL) Cb and Cr output level difference dB (PAL 75% color ber) Cb(x)/Cb(PAL) ldYCbCr2 -2 2 ldRGB2 -2 2 Demodulation output residual carrier ResiCarr (NOTE C3) 20 mVp-p Demodulation output residual higher ResiHarm (NOTE C4) 40 mVp-p harmonic 3.58N 3fr 3578700 3579640 3580000 fsc free-run frequency (NOTE C5) Hz 4.43P 4fr 4432600 4433700 4434100 SECAM SECTION ITEM SECAM black level adjustment Linearity Transient characteristic Killer operation input level VID OFF Cb,CNT Cr,CNT SYMBOL SBCbCT SBCrCT LinCb LinCr trCb trCr eSK eSC gDL TEST CONDITION (NOTE S1) (NOTE S2) (NOTE S3) MIN -9 -9 TYP 100 100 0.8 1.2 -42 -39 MAX 9 9 5 UNIT % s dB %
1H DL gain ratio between direct and delay
27
2005-08-18
TB1274BFG
SYNCHRONIZING SECTION ITEM HS output start voltage HS output frequency H AFC pull-in range H AFC hold range 50Hz 60Hz 50Hz 60Hz 50Hz 60Hz SYMBOL VSHVCO fHD50 fHD60 AFCp50 AFCp60 AFCh50 AFCh60 TEST CONDITION Vcc voltage MIN 15.4 15.4 14.625 14.734 14.625 14.734 TYP 3.6 15.625 15.734 15.625 15.734 15.625 15.734 MAX 15.9 15.9 16.625 16.734 16.625 16.734 UNIT V kHz kHz kHz
28
2005-08-18
TB1274BFG
TEST CONDITION NOTE ( Unless otherwise specified, YC-VCC/SYNC-VCC/D-VDD=5V and Ta=253 ) ITEM MEASURING METHOD COMMON TEST CONDITION Unless otherwise specified,- Y/C VCC, Sync-VCC and Digital VDD=5V, Ta=253. Set the BUS data preset, unless otherwise specified. Unless otherwise specified, SW33/34/35/39/41=A, ADD SW=B, Y1 SW=A, SYNC SW=A. COMMON TEST CONDITION FOR LUMINANCE SECTION Set the BUS data as Sharpness f0 is. Set the BUS data as CVBS1 input is selected. Minimize Y-OUT LEVEL via I2C BUS. Input Input ramp-signal to CVBS1/Y1-IN(pin 1). Measure input range on the right figure at pin21(Y-OUT).
Output
VIDEO SWITCH SECTION V1 Maximum video input range
2.0Vp-p
Input range
V2
CVBS-OUT amplitude gain
V3
Frequency bandwidth

V4
Crosstalk between each input
V5
Y-OUT maximum output range Cb-OUT maximum output range Cr-OUT maximum output range
Set the BUS data as CVBS1 input is selected. Input video signal (1.0Vp-p) to CVBS1/Y1-IN(pin 1). Calculate the gain between input signal's amplitude and amplitude of CVBS-OUT(pin 3). Set the BUS data as CVBS1 input is selected. Input sweep-signal to pin 1(CVBS1/Y1-IN). Measure the frequency where the ratio between the amplitude of pin 3(CVBS-OUT) and that of pin 1(CVBS1/Y1-IN) is -3dB by network analyzer . Input Signal 1(f0=4MHz, V0=0.7V, VS=0V) to pin 1(CVBS1/Y1-IN). Set the BUS data as CVBS1 input is selected. Short other input pins with AC coupling. Measure the amplitude of pin 3(CVBS-OUT). (V1) Set the BUS data as CVBS2 input is selected via I2C BUS. Measure the amplitude of pin 3(CVBS-OUT). (V2) Crosstalk level from pin 1 to pin 3 is calculated by the following equation. CT= 20log(V2 / V1) Calculate leak levels on other cases as well. Set the BUS data as CVBS1 input is selected. Maximize Y-OUT LEVEL via I2C BUS. Measure Y output range at Y-OUT(pin 21) in the same as NOTE V1. Measure Cb/Cr output range as well.
29
2005-08-18
TB1274BFG
NOTE ITEM LUMINANCE SECTION Y1 Chroma trap attenuation MEASURING METHOD COMMON TEST CONDITION FOR LUMINANCE SECTION Set the BUS data as Y1/C1 input is selected. Set the BUS data as C TRAP is ON. Input signal 1(f0=3.58MHz(NTSC), V0=0.5V, VS=0V) to pin 1(CVBS1/Y1-IN). Measure the amplitude at pin 21(Y-OUT) with the chroma trap being turned on(VTon) and off(VToff). Calculate the attenuation value as following equation. Gtr3=20log(VToff / VTon) Calculate the following value in the same way as to . Gtr4 : f0=4.43MHz(PAL) GtrS : f0=4.43MHz(SECAM) GtrSD : f0=5.0MHz(SECAM, S-D TRAP = ON) Input PAL Black Burst signal to pin 1(CVBS1/Y1-IN). Monitor Cb or Cr out (pin 22 or 23), and measure voltage between blanking period and picture period as Offs1MAIN. Set the BUS data as RGB SELECT is YcbCr1 (or RGB1), and measure Offs1YcbCr1(or OffsRGB1) in the same way as . Set YS1(pin 24)=2V and Cb2, Cr2-in : no-signal input. Monitor Cb or Cr-OUT(pin 22 or 23), and measure voltage between blanking period and picture period as Offs2.
Y2
Cb, Cr offset level 1
Y3
Cb, Cr offset level 2
30
2005-08-18
TB1274BFG
NOTE ITEM CHROMA SECTION MEASURING METHOD
C1
C2
C3 C4
C5
COMMON TEST CONDITION FOR CHROMA SECTION Set the BUS data as Y1/C1 input is selected via I2C BUS. Set the BUS data as BPF f0 is through, Color system is Europe mode and P/N GW is 2.0s. APC pull-in/hold range Input color signal(4.43PAL, 100mVp-p) to pin 48(C1-IN). Increase its frequency until Cb-OUT at pin 22 is discolored(upper hold range), and decrease its frequency until Cb-OUT is colored(upper pull-in range). In the same way, decrease its frequency until Cb-OUT is discolored(lower hold range), and increase its frequency until Cb-OUT is colored(lower pull-in range). Calculate the differences between the frequencies and center frequency(4.43MHz). Killer operation input level Set the BUS data as P/N ID is Normal. Input color signal(3.58NTSC) to pin 48(C1-IN). While attenuating the burst signal, measure the burst amplitude when Cb-OUT(pin 22) is discolored. Set P/N ID Low, and measure killer level as well. Input 4.43PAL color signal to pin 48, and measure items in the same way asto. Demodulation output residual Input 3.58NTSC or 4.43NTSC rainbow color bar signal(burst=100mVp-p) to pin 48(C1-IN). carrier Measure sub-carrier leak's amplitude in Cb signal of pin 22 and Cr signal of pin 23 respectively. Demodulation output residual Input 3.58NTSC or 4.43NTSC rainbow color bar signal(burst=100mVp-p) to pin 48(C1-IN). higher harmonic Measure higher harmonic's amplitude (2fc=7.16MHz or 8.86MHz) in Cb signal of pin 22 and Cr signal of pin 23 respectively. fsc free-run frequency Input nothing into pin 48(C1-IN). Change setting of Color system according to respective frequency modes. Measure frequency of fsc signal of pin 46 respectively.
31
2005-08-18
TB1274BFG
NOTE ITEM SECAM SECTION MEASURING METHOD COMMON TEST CONDITION FOR SECAM SECTION Set the BUS data as Y1/C1 input is selected. Input SECAM 75% color bar(R-Y ID=214mVp-p) to pin 48(C1-IN), unless otherwise specified. Measure the amplitude from black bar levels in output of pin 22 and 23. Calculate items by the following equation. LinCb= V[yellow] / V[blue]x100 (%) LinCr= V[cyan] / V[red]x100 (%) Measure the period shown in the following figure at pin 22(Cb-OUT) and Green tTRCb, tTRCr pin 23(Cr-OUT).
90%
S1
Linearity
S2
Transient characteristic
10%
Magenta
S3
Killer operation input level
Set the BUS data as S-ID is Normal and S V-ID SW is OFF. While attenuating the ID signal, measure its R-Y ID amplitude when the killer is ON/OFF as eSK and eSC.
32
2005-08-18
TB1274BFG
TEST SIGNAL Color bar
Y signal component Burst
Black Burst
Burst
Rainbow color bar
Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6 Signal 7 Signal 8 Signal 9 Burst
180150 1209060300-30 -90 -60
Sweep signal
Sweep signal Amplitude V 0
V sync
Signal 1
Sinusoidal wave Frequency f 0 Amplitude V 0 Set-up V S
33
2005-08-18
75 0.01F 47F
+
75 10F 10F
75 10F
6.8k
16k
10k
10k
6.8k
1.5k
1.8k
1.5k
TP41
TP39
TP44
TP43
75 10F
48 C1-in
6.8k
16k TP1
46 Fsc-out
38
40 APC-fil
1.5k
Sync-in
B
0.1F TP2
42 ADDRESS
CVBS1/Y1-in 2 Sync-in CVBS-out VS Comb Y-in Digital-VDD Comb C-in / Forced-S Digital-GND HS SCP Yvi-out Sync-VCC SCL SDA
0.1F
Sync SW
Comb C-in
CVBS-out
75
10F
VS
10k
10k
0.1F TP5
+
1.8k
47F
0.01F
0.01F
Foced-S SW TP7
0.1F
Y2-in Cb2-in Cr2-in Y/C-GND R1-in G1-in B1-in
TB1274AF
TP31
HS
7.5k
0.1F 75 0.1F 75
TP30
SCP
+
TP11
TP29
47F
0.1F 75 0.1F 75 0.1F 75
0.01F
TP27
SCL SDA
100
TP26
100
YS1 24 (YCbCr2-in)
TP18 0.1F
TP19 0.1F
0.1F
+
TEST CIRCUIT
Sync-GND 16 YS3 (RGB1-in) 15
CLP-fil 20
Cb-out 22
Cb1-in 18
Cr-out 23
Cr1-in 17
Y-out 21
Y1-in 19
TP25
+
34
CVBS2/Y2-in CVBS3/Y3-in CVBS1/Y1-in C2-in C3-in C1-in 5V
75 10F 75 10F 75 10F
+ + + + + +
TB1274BFG
2005-08-18
Fsc-out
0.01F 10k
+
16k
10k
10k
6.8k
16k
10k
10k
1.8k
1.5k
1.8k
0.01F
0.01F
0.1F
0.1F
+
Add SW
B
B
A
A
Comb Y-in
TP48
+ +
8AH
88H
0.47 27k
Comb SYS
2.2F 3.9k
0.022F
0.01F
SW39
8CH A
SW41
B
TP47
TP40
45 Comb SYS
43 C2-in
39 C3-in
47 AFC-fil
16.2MHz
10pF
44 CVBS2/Y2-in
41 CVBS3/Y3-in
1
X'tal fil
37
A A B
36
3 4 5 6 7 8 9 10 11 12 13 14
YS2/YM (RGB2-in) R2-in G2-in B2-in Y/C-VCC
YS2/YM
TP35 0.1F
SW35
A
75
35 34 33 32 31 30 29 28 27 26 25
R2-in
75
B
TP34
0.1F
SW34
A B A B
G2-in
75
TP33
0.1F
SW33
B2-in
0.01F 47F
75
Y2-in
Cb2-in Cr2-in
R1-in G1-in B1-in
TP17
4.7F
75
75
75 Y1-SW
A B
Cb-out
Cb1-in
Cr-out
Y-out
Cr1-in
YS3
YS1
Y1-in
75 0.01F 47F
+
75 10F 10F
75 10F
6.8k
16k
10k
10k
6.8k
16k
1.5k
1.8k
1.5k
75 10F 10F
48 C1-in
6.8k
16k
42 ADDRESS
1.5k
0.1F
CVBS1/ Y1-in Sync-in CVBS-out VS
0.1F
CVBS-out
75
(6.8k)
VS
0.1F 0.1F 75
10k
10k
Comb Y-in Digital-VDD Comb C-in / Forced-S Digital-GND HS SCP Yvi-out Sync-VCC SCL SDA
+
1.8k
47F
0.01F
0.01F
0.1F
TB1274AF
(2.7k)
Y2-in Cb2-in Cr2-in Y/C-GND R1-in G1-in B1-in
HS
0.1F 75 0.1F 75
7.5k
SCP
+
47F
0.1F 75 0.1F 75 0.1F 75
0.01F
SCL SDA
100
YS1 24 (YCbCr2-in)
0.1F
0.1F
0.1F
+
Sync-GND 16
APPLICATION CIRCUIT
YS3 (RGB1-in) 15
CLP-fil 20
Cb-out 22
Cb1-in 18
Cr-out 23
Cr1-in 17
Y-out 21
100
+
35
CVBS2/Y2-in CVBS3/Y3-in CVBS1/Y1-in C2-in C3-in C1-in 5V
75 10F 75 10F 75 10F
+ + + + + +
TB1274BFG
2005-08-18
Fsc-out
0.01F 10k
+
10k
10k
6.8k
16k
10k
10k
1.8k
1.5k
1.8k
0.01F
0.01F
0.1F
0.1F
0.47F
+
Add SW
Comb Y-in
+ +
0.01F
8CH 8AH
88H
2.2F 3.9k
Comb SYS
0.022F
27k
A
B
45 Comb SYS
43 C2-in
39 C3-in
47 AFC-fil
16.2MHz
10pF
46 Fsc-out
38
40 APC-fil
44 CVBS2/Y2-in
41 CVBS3/Y3-in
1 2 3
X'tal fil
37 36
YS2/YM
0.1F 75
Comb C-in
YS2/YM (RGB2-in) R2-in G2-in B2-in Y/C-VCC
35
4 5 6 7 8 9 10 11 12 13 14
R2-in G2-in
0.1F 75
34 33 32 31 30 29 28 27 26 25
B2-in
0.01F 47F
75
Y2-in Cb2-in Cr2-in
R1-in G1-in B1-in
Y1-in 19
4.7F
75
75
75
YS1
Cb1-in
Cb-out
Cr1-in
Cr-out
Y-out
Y1-in
YS3
TB1274BFG
OUTLINE DRAWING Unit : mm QFP48--P-1014-0.80
Weight : 0.83 g (Typ.)
36
2005-08-18
TB1274BFG
37
2005-08-18


▲Up To Search▲   

 
Price & Availability of TB1274BFG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X